

Reg.	No.			10				H 1	1 10	10								,

Name:.....

Third Semester B. Tech. Degree Examination, September 2014 (2008 Scheme) (Special Supplementary)

08.302 : SOLID STATE DEVICES (TA)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all questions briefly. Each carries 4 marks.

- 1. Explain how does the Fermi level position vary with doping in a semiconductor.
- How are crystal plane and directions designated?
- 3. List the assumptions made in the derivation of ideal diode current equation.
- 4. Define the basic properties of metal-semiconductor junction. Explain the working of a diode, based on this principle.
- 5. What is meant by carrier life time? How does it affect the performance of a device?
- 6. Sketch the:
 - i) space -charge region
 - ii) charge density
 - iii) electric field and
 - iv) barrier voltage for a P+N junction.

- 8. How FET can be used as a variable resistor? Explain.
- 9. Explain sub-threshold conduction in MOSFET.
- 10. Draw and explain CV diagram of a MOS capacitor.

(10×4=40 Marks)

PART-B

Answer any two full questions from each Module. Each full question carries 10 marks.

I-sluboM. amination, September 2014.

- 11. a) For a GaAs P+N one-sided abrupt junction with $N_D=8\times10^{14}/cc$, calculate the depletion width at breakdown, if $V_{BR}=500$ V. Given $\epsilon_r=12.4$, $\epsilon_0=8.85\times10^{-14}\,\text{F/cm}^2$.
 - b) Derive expression for the total current in a semiconductor. Discuss the effect of temperature on total current.
- 12. a) The resistivity ρ_o of a Germanium sample is measured at 300 K. The sample is then remelted and doped with 4×10^{16} arsenic atoms per cc. The new crystal has a resistivity of 0.1 Ω cm and is n-type. Determine the type and concentration of dopant atoms in the original sample and the value of ρ_o . Assume $\mu_n = 2\mu_p = 3000$ cm²/V-S.
 - b) Calculate the contact potential of a PN junction diode having $N_A=10^{17}/cc$, $N_D=10^{13}/cc$ at 30°C. Given $n_i=1.6\times10^{10}/cc$.
- a) Derive the expressions for the conductivity of both intrinsic and extrinsic semiconductors.
 - b) The mobility of free electrons and holes in Ge are 3800 and 1900 cm²/V-S. For Si, they are 1300 and 550 cm²/V-S respectively. Determine the values of intrinsic conductivity of Ge and Si. Take n_i=2.5×10¹³/cc for Ge and n_i=1.5×10¹⁰/cc for S_i at 30°C.

Module - II

- 14. A Schottky barrier is formed from n-type Si having a doping of $10^{16}/cc$ and area 10^{-3} cm². A Si pn junction has same area and N_A = 10^{19} , N_D = 10^{16} , $\tau_p = \tau_n = 1 \mu s$.
 - a) Calculate the Schottky barrier diode current at 0.4 V and 300 K.
 - b) Calculate the equilibrium depletion layer capacitance C_j and storage capacitance C_s at 0.4 V forward bias for Schottky diodes. Electron affinity of Si is 4.15eV, metal work function is 4.9 eV,B =100A/K² cm², D_{pn} =12 cm²/s, A =10⁻³, Q =1.6×10⁻¹⁹C, L_{pn} = 3.46×10⁻³ cm, n_i =1.5×10¹⁰/cm, \in =18.854×10⁻¹⁴.

- 15. a) Establishing appropriate relations, explain why BV_{CBO} is larger than BV_{CEO}.
 - b) Compute δ , α , β , I_{CBO} and I_{CEO} of a PNP BJT having I_{EP} = 2mA, I_{EN} = 0.02 mA, I_{cp} =1.98 mA and I_{cn} = 0.002 mA.
- 16. A symmetrical Silicon P+nP+BJT has A = 10^{-4} cm², W_B = $1\,\mu$ m. Its emitter has N_A= 10^{17} /cc, $\tau_n=0.1\mu$ s, $\mu_p=200$ cm²/V-S, $\mu_n=700$ cm²/V-S. The base has N_D= 10^{15} /cc $\tau_p=10\mu$ s, $\mu_n=1300$ cm²/V-S, $\mu_p=450$ cm²/V-S. Calculate
 - a) I_{ES}, I_{CS}
 - b) I_B when $V_{EB} = 0.4 \text{ V}$ and $V_{CB} = -25 \text{ V}$.

Module - III

- 17. An Aluminium gate p-channel MOS transistor is made on an n-type silicon substrate with $N_D = 6 \times 10^{16}/\text{cc}$. The SiO_2 thickness is 1000 Å in the gate region and the effective interface charge Q_i is $2 \times 10^{11} \text{qc/cm}^2$. Find the maximum width of depletion layer, the flat band voltage and the threshold voltage.
- 18. An n-channel silicon JFET has $N_A=10^{19}/cc,\ N_D=10^{15}/cc$ and $a=4~\mu\,m$. Determine at 300 K .
 - a) Pinch-off voltage and
 - b) The gate bias required to make the thickness of undepleted channel equal to 1 μm with $V_{DS}=0$.
- Neatly sketch the constructional diagram and characteristics of IGBT and explain its working. Compare and contrast its performance with BJT.

(3×2×10=60 Marks)